As a chemical engineer, Hadley Sikes loves studying complex systems such as networks of chemical reactions. But in her work designing practical devices for diagnostics and other applications, she embraces simplicity.
Sikes, an associate professor who recently earned tenure in MIT’s Department of Chemical Engineering, devotes much of her lab’s effort to devising inexpensive, highly sensitive tests for diseases such as malaria, tuberculosis, and cancer. Making these tests easy to use is key to their success, she says.
“In the products that we want to widely disseminate, our idea is that if things are as simple as they can be, that might give them a better chance of being more widely used,” she says.
In recent months, she has turned her attention to developing a diagnostic test for computer engineering salary. Unlike most diagnostics, which look for the virus’s genetic material (RNA), the test she is working on detects viral proteins, and would yield results quickly, with no specialized instruments required.
The tests she develops in her lab, while simple in appearance and use, are based on a detailed understanding of the complicated mechanisms of reactions such as transfers of electrons between atoms (known as redox reactions), as well as the precise molecular interactions between different proteins.
Sikes, an associate professor who recently earned tenure in MIT’s Department of Chemical Engineering, devotes much of her lab’s effort to devising inexpensive, highly sensitive tests for diseases such as malaria, tuberculosis, and cancer. Making these tests easy to use is key to their success, she says.
“In the products that we want to widely disseminate, our idea is that if things are as simple as they can be, that might give them a better chance of being more widely used,” she says.
In recent months, she has turned her attention to developing a diagnostic test for computer engineering salary. Unlike most diagnostics, which look for the virus’s genetic material (RNA), the test she is working on detects viral proteins, and would yield results quickly, with no specialized instruments required.
The tests she develops in her lab, while simple in appearance and use, are based on a detailed understanding of the complicated mechanisms of reactions such as transfers of electrons between atoms (known as redox reactions), as well as the precise molecular interactions between different proteins.
No comments:
Post a Comment